物理科学談話会

Neutron diffraction in new multiferroic molecular magnets

Prof. Javier Campo

スペイン・サラゴサ大学

2016年7月14日(水)16:30~18:00

サイエンスホール (A12 棟)

問い合わせ: 細越 裕子(理学系研究科 物理科学専攻) 内線 4053 E-mail: yhoso@p.s.osakafu-u.ac.jp

Neutron diffraction in new multiferroic molecular magnets

Javier CAMPO.

Materials Science Institute of Aragón, CSIC – University of Zaragoza, Zaragoza, Spain Guest Professor at Osaka Prefecture University, Osaka, Japan

The family of antiferromagnetic A_2 [FeCl₅(H₂O)] compounds (A = alkali metal or ammonium ion) has awakened a renewed interest owing to the recent observation of multiferroicity in some of its members.^{i,ii} We have recently investigated by means of single crystal and powder neutron diffraction the magnetic structure of (ND₄)₂[FeCl₅(D₂O)] (with

Figure 1: View along the *b*-axis of the superposition of the nuclear and magnetic structures of $(ND_4)_2$ [FeCl₅(D₂O)]. For the sake of clarity only [FeCl₅(D₂O)] units have been represented.

properties completely equivalent to the hydrogenated form) in order to understand the underlying mechanism of multiferroicity in this compound. This material orders antiferromagnetically at T_N = 7.25 K and multiferroicity arises below ca. 6.9 K with the onset of ferroelectric order. We have observed at zero magnetic field a cycloidal magnetic structure propagating in the *c*-axis with **k** = (0, 0, 0.23) and with the magnetic moments lying in the *ac* plane (Fig.1). This cycloid would be at the origin of the magneto-electric coupling via inverse Dzyaloshinsky-Moriya interactionⁱⁱⁱ.

ⁱ Ackermann M, Brüning D, Lorenz T, Becker P and Bohatý L **2013** New J. Phys. 15 123001

ⁱⁱ Ackermann M, Lorenz T, Becker P and Bohatý L **2014** ArXiv :1408.3997v1

ⁱⁱⁱ Velamazán et al. Scientific Reports | 5:14475 | DOI: 10.1038/srep14475